Multiple Linear Regression - EDA and Model

Research Objective

Research Question: What determines a person's height?

Population: All BYU students.

Parameter of Interest:

• Some number measuring the "relationship" between height and various other explanatory variables such as fathers height, mother's height, etc.

Sample: A convenience sample of 1575 BYU students who are in Stat 121.

More Problem Definitions

Response Variable (y): The height of a student.

• This is a **continuous quantitative variable** meaning it can be any number (including decimals)

Explanatory Variable (x):

• Lots! The goal is to relate multiple explanatory variables to a single quantitative response variable.

Variable Encoding

(Part of) Your Student Survey Data

Height	MotherHeight	FatherHeight	SportsInHS	Sex	ShoeSize
69	63	72	No	Female	9.5
68	71	74	Yes	Female	9.5
73	64	72	No	Male	11.5
66	64	70	Yes	Female	7.5
75	70	72	Yes	Male	12.0

What do we do with the "Yes/No" variables?

- Encoding the process of assigning categorical variables numerical values.
- One-hot-encoding (aka Dummy Variable encoding) uses 1's and 0's.
- Yes=1, No=0 or Female=0, Male=1 (alphabetical)
- Much more on this in more stats classes but we'll keep in simple here.

EDA Tool #1 - Plots

EDA Tool #2 - Correlations

<u>Reminder on Properties of Correlation (r):</u>

- $\bullet \ -1 < r < 1$
- Only appropriate for LINEAR relationships
- NOT impacted by scale of data (scale invariant).
- Highly impacted by outliers
- $\operatorname{Cor}(X,Y) = \operatorname{Cor}(Y,X)$

Stat 121 Analysis Tool	=
Exploratory Data Analysis	
Normal Probability Calculator	Multi Linear Regression
Central Limit Theorem	1) Dataset Selection
Analysis for Means <	Data Selection Use Preexisting Dataset
Analysis For Proportions <	O Upload Your Own Dataset
Regression <	Select Dataset Melanoma Choose the dataset you want
≫ Simple Linear Regression	Description: Melanoma mortality rates (per 10 million people) for each state in the continental LIS
» Multi Linear Regression	
	Sample size: 49 Display Dataset
Multi-linear regression section	Select dataset

2) Select Variables			
Please select up to 30 explanator	y variables to use. Each explanatory variable should "explain" wha	t happens to the response variable. NOTE: Only numeric variables will be given as op	tions
Select Response Variable: Mort Set the	e response variable		•
Select Explanatory Variable(s):			
Lat Ocean Long	Choose any explanatory variables – ple	ease READ questions carefully about	
Show 5 ventries	what explanatory variables to use	Search:	:
	Lat 🔶	Ocean 🔶	Long 🔶
1	33	1	87
2	34.5	0	112
3	35	0	92.5
4	37.5	1	119.5
5	39	0	105.5
Showing 1 to 5 of 49 entries		Previous 1 2 3 4	5 10 Next
Proceed to EDA			

Because there are many variables, we have to explore them one at a time

In specifying a model for the *population* relationship between height and all the explanatory variables, we want to,

- 1. include all the variables at the same time,
- 2. keep it linear in all the variables at the same time,
- 3. account for the fact that the data is not a perfect relationship.

where:

- X_{1i} is the i^{th} observation the of 1st explanatory variable
 - E.g X_{13} the mother's height for the 3rd observation in our dataset.
- P = total number of explanatory variables you have

$$\begin{split} \text{Height}_{i} &= \beta_{0} + \beta_{1}\text{MH}_{i} + \beta_{2}\text{FH}_{i} + \beta_{3}\text{Sports}_{i} + \beta_{4}\text{Sex}_{i} + \beta_{5}\text{Shoe}_{i} + \epsilon_{i} \\ \epsilon_{i} &\sim \mathcal{N}(0, \sigma^{2}) \end{split}$$

How do we interpret $\beta_0, \beta_1, \ldots, \beta_5$ (these are called slopes" or "effects")?

- β_1 (MotherHeight): Holding everything else constant (or all else being equal), as the height of the mother goes up by 1, we expect height to go up by β_1 on average.
- β_2 (FatherHeight): Holding everything else constant (or all else being equal), as the height of the father goes up by 1, we expect height to go up by β_2 on average.
- β_3 (Sports): Holding everything else constant (or all else being equal), student's who play sports in high school are expected to be β_3 inches taller than those who didn't.

$$\begin{split} \text{Height}_{i} &= \beta_{0} + \beta_{1} \text{MH}_{i} + \beta_{2} \text{FH}_{i} + \beta_{3} \text{Sports}_{i} + \beta_{4} \text{Sex}_{i} + \beta_{5} \text{Shoe}_{i} + \epsilon_{i} \\ \epsilon_{i} &\sim \mathcal{N}(0, \sigma^{2}) \end{split}$$

How do we interpret $\beta_0, \beta_1, \ldots, \beta_5$?

- β_5 (shoe size): Holding everything else constant (or all else being equal), as shoe size increases by 1, students get β_5 inches taller on average.
- β_0 : Female student's whose parents are 0 inches tall, did not play sports in HS and wear a 0 shoe size, we expect their height to be β_0 on average.

$$\begin{split} \text{Height}_{i} &= \beta_{0} + \beta_{1}\text{MH}_{i} + \beta_{2}\text{FH}_{i} + \beta_{3}\text{Sports}_{i} + \beta_{4}\text{Sex}_{i} + \beta_{5}\text{Shoe}_{i} + \epsilon_{i} \\ \epsilon_{i} &\sim \mathcal{N}(0, \sigma^{2}) \end{split}$$

INTERCHANGEABLE TERMINOLOGY WARNING! The β_1, \ldots, β_5 can be called any of the following:

- Slopes: "what is the slope for shoe size on height?"
- Effects: "what is the effect of shoe size on height?"
- Coefficients: "What is the coefficient for shoe size in the regression model?"

Assumptions of the MLR Model

Easy way to remember what we are assuming about the population in a multiple linear regression model:

- L Linear relationship between y and all the quantitative x's simultaneously
- I Independence (one obs. doesn't impact the other)
- N Normal residuals (distance from "line" is normal)
- E Equal spread of residuals around the "line"

More on why these assumptions are important and how to check these in the next subunit.

Parameters we want to estimate: $\beta_0 \& \beta_1, \ldots, \beta_P$ (which defines the line) and σ (so we know how spread out things are)

<u>Goal:</u> Find the predictions that goes "closest" to the data points.

What do we mean by "line closest to points"? We want to find $\hat{eta}_0, \hat{eta}_1, \dots, \hat{eta}_P$ so that:

$$egin{split} &\sum_{i=1}^n (ext{Obs}_i - ext{Pred}_i)^2 = \sum_{i=1}^n (Y_i - (\hateta_0 + \hateta_1 X_{1i} + \hateta_2 X_{2i} + \dots + \hateta_P X_{Pi}))^2 \ &= \sum_{i=1}^n (ext{residual}_i)^2 \end{split}$$

is as small as possible. This is called the least squares regression line.

A few notes:

- 1. We "square" distances to account for "above" and "below" the line distances.
- 2. We sum squared residuals because we look at all the data.
- 3. We use "hats" to denote estimates from sample (for example, $\hat{\beta}_1$ is our estimate of β_1) 4. We include all the explanatory variables simultaneously.

How do we find $\hat{eta}_0,\ldots,\hat{eta}_P$ that minimizes

$$egin{split} &\sum_{i=1}^n (ext{Obs}_i - ext{Line}_i)^2 = \sum_{i=1}^n (Y_i - (\hateta_0 + \hateta_1 X_{1i} + \hateta_2 X_{2i} + \dots + \hateta_P X_{Pi}))^2 \ &= \sum_{i=1}^n (ext{residual}_i)^2? \end{split}$$

- 1. Guess and check
- 2. Use calculus
- In both cases, we'll let the computer do the hard work for us.

The Fitted MLR Model

Fitted MLR Model Output

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	23.9398704	1.3214456	18.116426	0.0000000
MotherHeight	0.2294728	0.0166812	13.756401	0.0000000
FatherHeight	0.2445963	0.0155991	15.680122	0.0000000
SportsInHSYes	0.1241309	0.1183613	1.048746	0.2944567
SexMale	3.0174074	0.1361838	22.156871	0.0000000
ShoeSize	1.1225896	0.0375218	29.918346	0.0000000

Fitted Regression Line Equation:

 $\hat{y} = 23.94 + 0.23 imes ext{MotherHeight}_i + 0.24 imes ext{FatherHeight}_i + 0.12 imes ext{Sports}_i + 3.02 imes ext{Sex}_i + 1.12 imes ext{ShoeSize}_i$

The Fitted MLR Model

How do we interpret $\hat{eta}_0=23.94?$

• β_0 : For female children with 0 inch tall parents who do not play sports in HS and wear a 0 shoe size, we expect their height to be 27.28in on average.

How do we interpret $\hat{eta}_3=0.124$ (sports)?

• All else being equal, students who play sports in high school are 0.124 inches taller, on average.

How do we interpret $\hat{eta}_5=1.123$ (shoe size)?

• Holding everything else constant (or all else being equal), as the shoe size goes up by 1, we expect height to go up by 1.123 on average.

4) Check Regression Assumptions Junore for now (we'll come back to it next lecture)
What regression assumption plot do you want to look at?
Proceed to Regression Analysis (Statistical Inference)

5) Regression Analysis						
Regression Analysis of: Mort (Y) explai Coefficient Table:	ned by Lat, Ocean,	Long (X's)				
Confidence Level for Slope and Intercept:						0.95 0.99
0.5 0.55	0.6	0.65 0.	7 0.7	5 0.8	0.85 0.9	0.95 0.99
Show 5 ~ entries						
Test				\$	F-statistic 🔶	p.value 🝦
1 F-test for all slopes are equal to	zero				50.826	0
Showing 1 to 1 of 1 entries		There is a lot g	oing on here	but for this subu	nit, all	Previous 1 Next
Show 5 v entries	K	🖊 you need are t	he slopes (we	e'll get to the rest	later)	
	Estimate	Std. Error 🍦	t value 🍦	p value	CI Lower Bound 🍦	CI Upper Bound 🍦
(Intercept)	349.2369	27.0596	12.9062	0	294.7361	403.7377
Lat	-5.495	0.5289	-10.3898	0	-6.5602	-4.4297
Ocean	21.7976	5.2263	4.1707	0.0001	11.2712	32.324
Long	0.1219	0.1732	0.7037	0.4852	-0.227	0.4708
Showing 1 to 4 of 4 entries						Previous 1 Next
R-squared: 0.7721 sigma-hat: 16.4806						
Proceed to Predictions						

Fitted regression equation:

 $\hat{y} = 349.2369 - 5.495 imes$ Lat + 21.7976 imesOcean + 0.1219 imesLong

Visualizing the Fitted MLR Model

When we only had 1 explanatory variable, we could visualize the fitted model:

But we can't do that here because we have multiple explanatory variables that all work together.

Visualizing the Fitted MLR Model

Added variable plots (also known as partial regression plots):

• Intuition: Make a scatterplot of one x vs y AFTER "adjusting" for the other x's (math detail beyond this course so we'll just let the computer do it for us).

Added-Variable Plots

ShoeSize | others

An estimate of σ is more complicated to explain (take more stats courses), so for purposes of this class, the computer estimates it for us.

• $\hat{\sigma}=$ 1.809

How do we interpret $\hat{\sigma}$?

- On average, the actual heights are about 1.809 far away from the estimated heights.
- Is this "better" or "worse" than if we just included mother's height?
- $\hat{\sigma}$ = 3.896 if we only use mother height.
- It's hard to tell just from $\hat{\sigma}$ how good a model is. A better measure is R^2 .

Assessing Model Fit

Mathematical formula:

$$R^2 = 1 - rac{\sum_{i=1}^n (Y_i - (\hat{eta}_0 + \hat{eta}_1 X_{1i} + \dots + \hat{eta}_P X_{Pi}))^2}{\sum_{i=1}^n (Y_i - ar{y})^2} = 0.811$$

Intuition:

- Formal interpretation: The percent of variability in Y that is explained by all X's simultaneously.
- R^2 is between 0 and 1 with 1 meaning the explanatory variables perfectly explain the response.
- R^2 is a percentage grade on how well all the X's are doing in telling us about Y.
- For our study, 81.1% of the variation in student's height can be explained by mother's height, father's height, if you played sports in HS, biological sex and shoe size.

5) Regression Analysis						
Regression Analysis of: Mort (Y) e Coefficient Table:	explained by Lat, Ocean, Long] (X's)				
Confidence Level for Slope and Intercept: 0.5	:					0.95 0.99
0.5 0.55	0.6	0.65 0.7	0.75	0.8	0.85 0.9	0.95 0.99
Show 5 ~ entries						
Test					F-statistic 🝦	p.value 🍦
1 F-test for all slopes are eq	ual to zero				50.826	0
Showing 1 to 1 of 1 entries						Previous 1 Next
Show 5 ~ entries						
	Estimate	Std. Error 🔶	t value 🍦	p value 🍦	CI Lower Bound 🍦	Cl Upper Bound 🝦
(Intercept)	Estimate 🔶 349.2369	Std. Error 27.0596	t value 12.9062	p value 🧅 0	CI Lower Bound 🔷 294.7361	CI Upper Bound 403.7377
(Intercept) Lat	Estimate 🔶 349.2369 -5.495	Std. Error ↓ 27.0596 0.5289	t value 🔶 12.9062 -10.3898	p value 🔷 0 0	CI Lower Bound 294.7361 -6.5602	Cl Upper Bound 403.7377 -4.4297
(Intercept) Lat Ocean	Estimate 349.2369 -5.495 21.7976	Std. Error 27.0596 0.5289 5.2263	t value 🔷 12.9062 -10.3898 4.1707	p value ♦ 0 0 0.0001	CI Lower Bound 294.7361 -6.5602 11.2712	Cl Upper Bound ♦ 403.7377 -4.4297 32.324
(Intercept) Lat Ocean Long	Estimate 349.2369 -5.495 21.7976 0.1219	Std. Error ♦ 27.0596 0.5289 5.2263 0.1732	t value 12.9062 -10.3898 4.1707 0.7037	p value ♦ 0 0 0.0001 0.4852	CI Lower Bound ♦ 294.7361 -6.5602 11.2712 -0.227	Cl Upper Bound ♦ 403.7377 -4.4297 32.324 0.4708
(Intercept) Lat Ocean Long Showing 1 to 4 of 4 entries	Estimate 349.2369 -5.495 21.7976 0.1219	Std. Error 27.0596 0.5289 5.2263 0.1732	t value 12.9062 -10.3898 4.1707 0.7037	p value ♦ 0 0 0.0001 0.4852	CI Lower Bound 294.7361 -6.5602 111.2712 -0.227	Cl Upper Bound ♦ 403.7377 -4.4297 32.324 0.4708 Previous 1 Next
(Intercept) Lat Ocean Long Showing 1 to 4 of 4 entries R-squared: 0.7721 sigma-hat: 16.4806	Estimate 349.2369 -5.495 21.7976 0.1219	Std. Error 27.0596 0.5289 5.2263 0.1732	t value	p value ♦ 0 0 0 0.0001 0.4852	CI Lower Bound 294.7361 -6.5602 11.2712 -0.227	Cl Upper Bound ♦ 403.7377 -4.4297 32.324 0.4708 Previous 1 Next

Additional MLR Practice

Measuring possum head size can be difficult. What is the relationship between possum head size and sex, age, skull width, total length and tail length? Use a multiple linear regression model (and the course app) to answer the following questions:

- 1. What is the estimated head size for a newborn, female possum with 0 skull width, length and tail length?
- 2. How much should head size go up (or down) as the possum gets 1 cm bigger?
- 3. How much are male head sizes bigger (or smaller) than female head sizes (on average)?
- 4. On average, how far away are true head sizes from estimated head sizes?
- 5. How well do the explanatory variables explain head size?

Additional MLR Practice

- 1. What is the estimated head size for a newborn, female possum with 0 skull width, length and tail length?
 - $\hat{eta}_0 = 33.4974481$
- 2. How much should head size go up (or down) as the possum gets 1 cm bigger?
 - $\hat{\beta}_1 = 0.4528877$
- 3. How much are male head sizes bigger (or smaller) than female head sizes (on average)?
 - $\hat{eta}_2 = 1.1695384$
- 4. On average, how far away are true head sizes from estimated head sizes?
 - This is the $\hat{\sigma}=$ 2.080432

5. How well do the explanatory variables explain head size?

• This is $R^2=$ 0.669

Homework Choices for Unit 7

Same as Unit 6 but we're going to add more variables to the regression:

- 1. Rate my professor what matters in determining a rate my professor score?
- 2. Supervisor what makes people like their manager?
- 3. Body Fat what body measurements are predictive of your BMI?
- 4. Basketball Salary what skills lead to a higher salary?

Key Terminology

• EDA for MLR

- Interpretation of Coefficients
- Multiple linear regression model• Added-variable Plots
 - Least squares estimation

• R^2